
Steering Massively Parallel Steering Massively Parallel
Applications Under Python

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Applications Under Python

Patrick Miller
Lawrence Livermore National Laboratory

patmiller@llnl.gov

Characterization of Scientific Characterization of Scientific
Simulation CodesSimulation Codes
•• Big!Big!

–– Many optionsMany options

–– Many developersMany developers

•• Long LivedLong Lived
–– Years to developYears to develop

–– 20+ year life20+ year life

•• Used as a Used as a tooltool for understandingfor understanding
–– Used in unanticipated waysUsed in unanticipated ways

SteeringSteering

•• Steering uses an interpreted language as Steering uses an interpreted language as
the interface to “compiled assets.”the interface to “compiled assets.”
–– E.g. E.g. MathematicaMathematica

•• Rich command structure lets users Rich command structure lets users
“program” within simulation paradigm“program” within simulation paradigm

•• Exploit interactivityExploit interactivity

Why SteeringWhy Steering
•• Expect the unexpectedExpect the unexpected

•• Let endLet end--users participate in solutions to their users participate in solutions to their
problemsproblems

•• Users can set, calculate with, and control low level Users can set, calculate with, and control low level
detailsdetails

•• Developers can test and debug at a higher levelDevelopers can test and debug at a higher level

•• Users can write their own instrumentation or even Users can write their own instrumentation or even
full blown physics packagesfull blown physics packages

•• It works!It works!

–– MathematicaMathematica, , SCIrunSCIrun, BASIS, IDL, , BASIS, IDL, Tecolote Tecolote
(LANL), (LANL), PerlPerl, Python!!!!, Python!!!!

Why Python?Why Python?

•• Objects everywhereObjects everywhere

•• Loose enough to be practicalLoose enough to be practical

•• Small enough to be safeSmall enough to be safe
–– The tiny core could be maintained by one The tiny core could be maintained by one

personperson

•• Open source for the core AND many Open source for the core AND many
useful bits & pieces already existuseful bits & pieces already exist

The big pictureThe big picture
•• C++ and FORTRAN compiled assets for C++ and FORTRAN compiled assets for

speedspeed

•• Python for flexibilityPython for flexibility

•• Small, nimble objects are better than Small, nimble objects are better than
monolithic objectsmonolithic objects

•• No "main" No "main" -- The control loop(s) are in The control loop(s) are in
PythonPython
–– Python coPython co--ordinates the actions of C++ objectsordinates the actions of C++ objects

–– Python is the integration “glue”Python is the integration “glue”

Putting it together Putting it together -- PyfflePyffle

•• The biggest issue is always getting C++ The biggest issue is always getting C++
to "talk with" Python (wrapping)to "talk with" Python (wrapping)

•• SWIG,SWIG, PyFORTPyFORT, CXX Python, Boost , CXX Python, Boost
Python, PYFFLEPython, PYFFLE

•• Our big requirements are...Our big requirements are...
–– support for inheritancesupport for inheritance

–– support for Pythonsupport for Python--like interfaceslike interfaces

–– tolerance oftolerance of templatingtemplating<><>

The shadow layerThe shadow layer

•• Pyffle generates constructor functions Pyffle generates constructor functions --
NOT Python classesNOT Python classes

•• We build extension classes in Python that We build extension classes in Python that
"shadow" the C++ object to"shadow" the C++ object to

•• Allow Python style inheritanceAllow Python style inheritance
•• Add functionalityAdd functionality
•• Enforce consistencyEnforce consistency
•• Modify interfaceModify interface
••

ParallelismParallelism
•• Kull uses SPMD style computation with a Kull uses SPMD style computation with a

MPI enabled Python coMPI enabled Python co--ordinatingordinating
–– Most Most parallelism is directly controlled "under parallelism is directly controlled "under

the covers" by C++ (MPI and/or threads)the covers" by C++ (MPI and/or threads)

–– Started with a version with limited MPI support Started with a version with limited MPI support
(barrier, allreduce)(barrier, allreduce)

–– NewNew pyMPIpyMPI supports a majority of MPI supports a majority of MPI
standard calls (comm, bcast, reduces, sync & standard calls (comm, bcast, reduces, sync &
async send/recv, ...)async send/recv, ...)

Basic MPI in PythonBasic MPI in Python
•• mpimpi..bcastbcast(value)(value)

•• mpimpi.reduce(item,operation, root?).reduce(item,operation, root?)

•• mpimpi.barrier().barrier()

•• mpimpi.rank and.rank and mpimpi..nprocsnprocs

•• mpimpi.send(value,destination, tag?).send(value,destination, tag?)

•• mpimpi..recvrecv(sender,tag?)(sender,tag?)

•• mpimpi..sendrecvsendrecv((msgmsg,, destdest,, srcsrc?, tag?,?, tag?, rtagrtag?)?)

MPI MPI calcPicalcPi
def f(a): return 4.0/(1.0 + a*a)
def integrate(rectangles,function):

n = mpi.bcast(rectangles)
h = 1.0/n
for i in range(mpi.rank+1, n+1, mpi.procs):

sum = sum + function(h * (i-0.05))
myAnswer = h * sum
answer = mpi.reduce(myAnswer, mpi.SUM)
return answer

Making it fastMaking it fast

•• Where we have very generic base classes Where we have very generic base classes
in the code (e.g. Equationin the code (e.g. Equation--ofof--state), we state), we
have writtenhave written PythonizedPythonized descendant descendant
classes that invoke arbitrary user written classes that invoke arbitrary user written
Python functionsPython functions

•• C++ component doesn't need to know it's C++ component doesn't need to know it's
invoking Pythoninvoking Python

•• There is a speed issue :There is a speed issue :--((
•• But there is hope!But there is hope!

PyCOD PyCOD -- Compile on demand!Compile on demand!

•• Builds accelerated Python functions AND Builds accelerated Python functions AND
C++ functionsC++ functions

•• Input is a Python function object and a type Input is a Python function object and a type
signature to compile tosignature to compile to

•• Dynamically loads accellerated versionsDynamically loads accellerated versions
•• Caches compiled code (matched against Caches compiled code (matched against

bytecode) to eliminate redundant compilesbytecode) to eliminate redundant compiles
•• Early results are encouraging (20X to 50X Early results are encouraging (20X to 50X

speedup)speedup)

PyCOD PyCOD exampleexample
import compiler
from types import *

def sumRange(first,last):
sum = 0
for i in xrange(first,last+1):
sum = sum + i

return sum

signature = (IntType,IntType,IntType
compiledSumRange, rawFunctionPointer = \

compiler.accelerate(sumRange,signature)

print "Compiled result:", compiledSumRange(1,100)

SummarySummary

•• MPI enabled Python is a realityMPI enabled Python is a reality
–– We have run 1500 processors, long running We have run 1500 processors, long running

simulations running fully under a Python coresimulations running fully under a Python core
•• PYFFLE provides a reasonable conduit PYFFLE provides a reasonable conduit

for developers to build capability in C++ for developers to build capability in C++
and easily integrate that capability into and easily integrate that capability into
PythonPython

	Steering Massively Parallel Applications Under Python
	Characterization of Scientific Simulation Codes
	Steering
	Why Steering
	Why Python?
	The big picture
	Putting it together - Pyffle
	The shadow layer
	Parallelism
	Basic MPI in Python
	MPI calcPi
	Making it fast
	PyCOD - Compile on demand!
	PyCOD example
	Summary

